Part Number Hot Search : 
R620D 06100 2025R PCA155 2E3UM SA1461 AN877 AR503
Product Description
Full Text Search
 

To Download BUH150-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  switchmode  npn silicon planar power transistor the buh150 has an application specific stateofart die designed for use in 150 watts halogen electronic transformers. this power transistor is specifically designed to sustain the large inrush current during either the startup conditions or under a short circuit across the load. this high voltage/high speed product exhibits the following main features: ? improved efficiency due to the low base drive requirements: high and flat dc current gain h fe fast switching ? robustness thanks to the technology developed to manufacture this device ? on semiconductor six sigma philosophy provides tight and reproducible parametric distributions ??????????????????????? ??????????????????????? maximum ratings ??????????????? ??????????????? rating ??? ??? symbol ????? ????? value ??? ??? unit ??????????????? ??????????????? collectoremitter sustaining voltage ??? ??? v ceo ????? ????? 400 ??? ??? vdc ??????????????? ??????????????? collectorbase breakdown voltage ??? ??? v cbo ????? ????? 700 ??? ??? vdc ??????????????? ??????????????? collectoremitter breakdown voltage ??? ??? v ces ????? ????? 700 ??? ??? vdc ??????????????? ??????????????? emitterbase voltage ??? ??? v ebo ????? ????? 10 ??? ??? vdc ??????????????? ? ????????????? ? ??????????????? collector current e continuous e peak (1) ??? ? ? ? ??? i c i cm ????? ? ??? ? ????? 15 25 ??? ? ? ? ??? adc ??????????????? ? ????????????? ? ??????????????? base current e continuous base current e peak (1) ??? ? ? ? ??? i b i bm ????? ? ??? ? ????? 6 12 ??? ? ? ? ??? adc ??????????????? ??????????????? *total device dissipation @ t c = 25  c *derate above 25 c ??? ??? p d ????? ????? 150 1.2 ??? ??? watt w/  c ??????????????? ??????????????? operating and storage temperature ??? ??? t j , t stg ????? ????? 65 to 150 ??? ???  c ??????????????????????? ??????????????????????? thermal characteristics ??????????????? ? ????????????? ? ? ????????????? ? ??????????????? thermal resistance e junction to case e junction to ambient ??? ? ? ? ? ? ? ??? r q jc r q ja ????? ? ??? ? ? ??? ? ????? 0.85 62.5 ??? ? ? ? ? ? ? ???  c/w ??????????????? ??????????????? maximum lead temperature for soldering purposes: 1/8 from case for 5 seconds ??? ??? t l ????? ????? 260 ??? ???  c (1) pulse test: pulse width = 5 ms, duty cycle 10%. on semiconductor  ? semiconductor components industries, llc, 2002 april, 2002 rev. 3 1 publication order number: buh150/d buh150 power transistor 15 amperes 700 volts 150 watts case 221a09 to220ab 1 2 3 style 1: pin 1. base 2. collector 3. emitter 4. collector
buh150 http://onsemi.com 2 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (i c = 100 ma, l = 25 mh) ???? ? ?? ? ???? v ceo(sus) ???? ? ?? ? ???? 400 ???? ? ?? ? ???? 460 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ??????????????????? collectorbase breakdown voltage (i cbo = 1 ma) ???? ???? v cbo ???? ???? 700 ???? ???? 860 ???? ???? ??? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? emitterbase breakdown voltage (i ebo = 1 ma) ???? ? ?? ? ???? v ebo ???? ? ?? ? ???? 10 ???? ? ?? ? ???? 12.3 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current (v ce = rated v ceo , i b = 0) ???? ? ?? ? ???? i ceo ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ??????????????? ??????????????? collector cutoff current (v ce = rated v ces , v eb = 0) ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? i ces ???? ???? ???? ???? ???? ???? 100 1000 ??? ??? m adc ??????????????? ? ????????????? ? ??????????????? collector base current (v cb = rated v cbo , v eb = 0) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? i cbo ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 1000 ??? ? ? ? ??? m adc ??????????????????? ? ????????????????? ? ??????????????????? emittercutoff current (v eb = 9 vdc, i c = 0) ???? ? ?? ? ???? i ebo ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ????????????????????????????????? ????????????????????????????????? on characteristics ??????????????????? ? ????????????????? ? ??????????????????? baseemitter saturation voltage (i c = 10 adc, i b = 2 adc) ???? ? ?? ? ???? v be(sat) ???? ? ?? ? ???? ???? ? ?? ? ???? 1 ???? ? ?? ? ???? 1.25 ??? ? ? ? ??? vdc ??????????????? ??????????????? collectoremitter saturation voltage (i c = 2 adc, i b = 0.4 adc) ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? v ce(sat) ???? ???? ???? ???? 0.16 0.15 ???? ???? 0.4 0.4 ??? ??? vdc ??????????????? ??????????????? (i c = 10 adc, i b = 2 adc) ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 0.45 ???? ???? 1 ??? ??? vdc ??????????????? ??????????????? (i c = 20 adc, i b = 4 adc) ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 2 ???? ???? 5 ??? ??? vdc ??????????????? ? ????????????? ? ??????????????? dc current gain (i c = 20 adc, v ce = 5 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? h fe ???? ? ?? ? ???? 4 2.5 ???? ? ?? ? ???? 7 4.5 ???? ? ?? ? ???? ??? ? ? ? ??? e ??????????????? ? ????????????? ? ??????????????? dc current gain (i c = 10 adc, v ce = 5 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? 8 6 ???? ? ?? ? ???? 12 10 ???? ? ?? ? ???? ??? ? ? ? ??? e ??????????????? ? ????????????? ? ??????????????? dc current gain (i c = 2 adc, v ce = 1 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? 12 14 ???? ? ?? ? ???? 20 22 ???? ? ?? ? ???? ??? ? ? ? ??? e ??????????????? ??????????????? dc current gain (i c = 100 madc, v ce = 5 vdc) ????? ????? @ t c = 25 c ???? ???? ???? ???? 10 ???? ???? 20 ???? ???? ??? ??? e ????????????????????????????????? ????????????????????????????????? dynamic saturation voltage ???????? ???????? dynamic saturation vlt ???????? ???????? i c = 5 adc, i b1 = 1 adc ????? ????? @ t c = 25 c ???? ???? v ce(dsat) ???? ???? ???? ???? 1.5 ???? ???? ??? ??? v ???????? ???????? voltage: determined 3 m s after ???????? ???????? i c 5 adc , i b1 1 adc v cc = 300 v ????? ????? @ t c = 125 c ???? ???? () ???? ???? ???? ???? 2.8 ???? ???? ??? ??? v ???????? ???????? determined 3 m s after rising i b1 reaches 90% of final i b1 ???????? ???????? i c = 10 adc, i b1 = 2 adc ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 2.4 ???? ???? ??? ??? v ???????? ???????? 90% o f fi na l i b1 (see figure 19) ???????? ???????? i c 10 adc , i b1 2 adc v cc = 300 v ????? ????? @ t c = 125 c ???? ???? ???? ???? ???? ???? 5 ???? ???? ??? ??? v ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ? ????????????????? ? ??????????????????? current gain bandwidth (i c = 1 adc, v ce = 10 vdc, f = 1 mhz) ???? ? ?? ? ???? f t ???? ? ?? ? ???? ???? ? ?? ? ???? 23 ???? ? ?? ? ???? ??? ? ? ? ??? mhz ??????????????????? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f = 1 mhz) ???? ???? c ob ???? ???? ???? ???? 100 ???? ???? 150 ??? ??? pf ??????????????????? ? ????????????????? ? ??????????????????? input capacitance (v eb = 8 vdc, f = 1 mhz) ???? ? ?? ? ???? c ib ???? ? ?? ? ???? ???? ? ?? ? ???? 1300 ???? ? ?? ? ???? 1750 ??? ? ? ? ??? pf
buh150 http://onsemi.com 3 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? switching characteristics: resistive load (d.c. 10%, pulse width = 40 m s) ???????? ???????? turnon time ???????? ???????? ????? ????? @ t c = 25 c ???? ???? t on ???? ???? ???? ???? 200 ???? ???? 300 ??? ??? ns ???????? ???????? storage time ???????? ???????? i c = 2 adc, i b1 = 0.2 adc i b2 =02adc ????? ????? @ t c = 25 c ???? ???? t s ???? ???? ???? ???? 5.3 ???? ???? 6.5 ??? ??? m s ???????? ???????? fall time ???????? ???????? i b2 = 0.2 adc v cc = 300 vdc ????? ????? @ t c = 25 c ???? ???? t f ???? ???? ???? ???? 240 ???? ???? 350 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? v cc 300 vdc ????? ????? @ t c = 25 c ???? ???? t off ???? ???? ???? ???? 5.6 ???? ???? 7 ??? ??? m s ???????? ???????? turnon time ???????? ???????? ????? ????? @ t c = 25 c ???? ???? t on ???? ???? ???? ???? 100 ???? ???? 200 ??? ??? ns ???????? ???????? storage time ???????? ???????? i c = 2 adc, i b1 = 0.4 adc i b2 =04adc ????? ????? @ t c = 25 c ???? ???? t s ???? ???? ???? ???? 6.1 ???? ???? 7.5 ??? ??? m s ???????? ???????? fall time ???????? ???????? i b2 = 0.4 adc v cc = 300 vdc ????? ????? @ t c = 25 c ???? ???? t f ???? ???? ???? ???? 320 ???? ???? 500 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? v cc 300 vdc ????? ????? @ t c = 25 c ???? ???? t off ???? ???? ???? ???? 6.5 ???? ???? 8 ??? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 5 adc, i b1 = 0.5 adc i b2 =05adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 450 800 ???? ? ?? ? ???? 650 ??? ? ? ? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 0.5 adc v cc = 300 vdc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t off ???? ???? ???? ???? 2.5 3.9 ???? ???? 3 ??? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 10 adc, i b1 = 2 adc i b2 = 2 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 500 900 ???? ? ?? ? ???? 700 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? turnoff time ???????? ? ?????? ? ???????? i b2 = 2 adc v cc = 300 vdc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t off ???? ? ?? ? ???? ???? ? ?? ? ???? 2.25 2.75 ???? ? ?? ? ???? 2.75 ??? ? ? ? ??? m s ????????????????????????????????? ????????????????????????????????? switching characteristics: inductive load (v clamp = 300 v, v cc = 15 v, l = 200 m h) ???????? ???????? fall time ???????? ???????? ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t fi ???? ???? ???? ???? 110 160 ???? ???? 250 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 2 adc i b1 = 0.2 adc i b2 = 0 .2 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t si ???? ? ?? ? ???? ???? ? ?? ? ???? 6.5 8 ???? ? ?? ? ???? 8 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 0 . 2 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 235 240 ???? ? ?? ? ???? 350 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t fi ???? ???? ???? ???? 110 170 ???? ???? 250 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 2 adc i b1 = 0.4 adc i b2 = 0 .4 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t si ???? ? ?? ? ???? ???? ? ?? ? ???? 6 7.8 ???? ? ?? ? ???? 7.5 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 0 . 4 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 250 270 ???? ? ?? ? ???? 350 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? fall time ???????? ? ?????? ? ???????? ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t fi ???? ? ?? ? ???? ???? ? ?? ? ???? 110 140 ???? ? ?? ? ???? 150 ??? ? ? ? ??? ns ???????? ???????? storage time ???????? ???????? i c = 5 adc i b1 = 0.5 adc i b2 = 0 . 5 a dc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t si ???? ???? ???? ???? 3.25 4.6 ???? ???? 3.75 ??? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 0 . 5 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 275 450 ???? ? ?? ? ???? 350 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? fall time ???????? ? ?????? ? ???????? ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t fi ???? ? ?? ? ???? ???? ? ?? ? ???? 110 160 ???? ? ?? ? ???? 175 ??? ? ? ? ??? ns ???????? ???????? storage time ???????? ???????? i c = 10 adc i b1 = 2 adc i b2 = 2 a dc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t si ???? ???? ???? ???? 2.3 2.8 ???? ???? 2.75 ??? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 2 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 250 475 ???? ? ?? ? ???? 350 ??? ? ? ? ??? ns
buh150 http://onsemi.com 4 typical static characteristics figure 1. dc current gain @ 1 volt 100 10 1 10 1 0.1 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -20 c v ce = 1 v figure 2. dc current gain @ 3 volt 100 10 1 10 1 0.1 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -20 c v ce = 3 v 0.01 0.01 figure 3. dc current gain @ 5 volt 100 10 1 100 1 0.1 0.01 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -20 c v ce = 5 v 10 figure 4. collectoremitter saturation voltage 10 1 0.01 100 1 0.1 0.001 i c , collector current (amps) t j = 125 c t j = 25 c t j = -20 c i c /i b = 5 v ce , voltage (volts) 0.1 figure 5. collectoremitter saturation voltage 10 1 0.01 10 1 0.1 0.001 i c , collector current (amps) t j = 125 c t j = 25 c v ce , voltage (volts) 0.1 0.01 figure 6. baseemitter saturation region 1.5 1 0 100 1 0.01 0.001 i c , collector current (amps) v be , voltage (volts) t j = 125 c t j = 25 c t j = -20 c i c /i b = 5 0.5 0.1 0.01 10 i c /i b = 10 10 100 100 100
buh150 http://onsemi.com 5 typical static characteristics figure 7. baseemitter saturation region 1.5 0.5 0 100 1 0.1 0.001 i c , collector current (amps) v be , voltage (volts) t j = 125 c t j = 25 c t j = -20 c 1 0.01 i c /i b = 10 figure 8. collector saturation region 2 1 0 100 1 0.1 0.01 i b , base current (a) v ce(sat) (i c = 1 a) v ce , voltage (volts) t j = 25 c 8 a 5 a 1.5 0.5 20 a 15 a figure 9. capacitance 10000 10 100 10 1 v r , reverse voltage (volts) c, capacitance (pf) 100 c ib (pf) t j = 25 c f (test) = 1 mhz 1000 figure 10. resistive breakdown 900 700 400 1000 100 10 r be ( w ) bvcer (volts) t j = 25 c bvcer @ 10 ma 800 600 500 bvcer(sus) @ 200 ma 10 10 10 a c ob (pf)
buh150 http://onsemi.com 6 t, time (s) m typical switching characteristics figure 11. resistive switching, t on 2000 1000 0 15 3 0 i c , collector current (amps) 6 t, time (ns) 1400 800 i b1 = i b2 v cc = 300 v pw = 40 m s figure 12. resistive switch time, t off 12 6 0 15 10 0 i c , collector current (amps) figure 13. inductive storage time, t si 8 0 15 5 1 i c , collector current (amps) 6 3 8 4 2 7 t j = 125 c t j = 25 c i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h 1800 i c /i b = 5 figure 14. inductive storage time, t c & t fi @ i c /i b = 5 550 50 15 7 1 i c , collector current (amps) t, time (ns) 150 5 t j = 125 c t j = 25 c t c t fi 350 912 i c /i b = 10 i c /i b = 5 125 c 25 c 5 t j = 25 c t j = 125 c i b1 = i b2 v cc = 300 v pw = 20 m s i c /i b = 10 i c /i b = 5 t, time (s) m figure 13 bis. inductive storage time, t si 8 0 10 4 1 i c , collector current (amps) 7 4 7 t j = 125 c t j = 25 c i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h t, time (s) m 6 5 3 i c /i b = 10 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h figure 15. inductive storage time, t c & t fi @ i c /i b = 10 800 0 10 8 0 i c , collector current (amps) t, time (ns) 200 4 t c = 125 c t c = 25 c t c t fi 400 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h 600 1600 1200 600 400 200 10 7 4 5 1 2 391113 2 1 450 250 391113 700 500 300 100 2 6 125 c 25 c
buh150 http://onsemi.com 7 typical switching characteristics 5 0 10 4 2 h fe , forced gain 8 4 6 t j = 125 c t j = 25 c figure 16. inductive storage time 3 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h figure 17. inductive fall time 200 0 10 3 h fe , forced gain 150 t fi , fall time (ns) 100 50 467 t j = 125 c t j = 25 c , storage time ( t si m s) i c = 5 a i c = 10 a 589 i boff = i b2 v cc = 15 v v z = 300 v l c = 200 m h figure 18. inductive crossover time 800 300 100 h fe , forced gain 600 t c , crossover time (ns) 700 400 500 200 10 34 6 7 589 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h t j = 125 c t j = 25 c 1 i c = 5 a i c = 5 a 2 i c = 10 a i c = 10 a
buh150 http://onsemi.com 8 typical switching characteristics table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh r b2 = v cc = 20 volts i c(pk) = 100 ma inductive switching l = 200 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 rbsoa l = 500 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 figure 19. dynamic saturation voltage measurements time v ce 0 v i b 90% i b 1 m s dyn 1 m s dyn 3 m s figure 20. inductive switching measurements 10 4 0 8 2 0 time 6 8 6 2 4 9 7 5 3 1 13 5 7 i b i c v clamp t si t c t fi 90% i c 10% i c 90% i b1 10% v clamp +15 v 1 m f 150 w 3 w 100 w 3 w mpf930 +10 v 50 w common -v off 500 m f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150 w 3 w 100 m f i out a r b1 r b2 1 m f i c peak v ce peak v ce i b i b 1 i b 2 3 m s
buh150 http://onsemi.com 9 typical thermal response figure 21. forward bias power derating 1 0 160 100 20 t c , case temperature ( c) 0.8 power derating factor 0.6 0.4 0.2 60 140 second breakdown derating 40 80 120 thermal derating there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 22 is based on t c = 25 c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 22 may be found at any case temperature by using the appropriate curve on figure 21. t j(pk) may be calculated from the data in figure 24. at any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. for inductive loads, high voltage and current must be sustained simultaneously during turnoff with the base to emitter junction reverse biased. the safe level is specified as a reverse biased safe operating area (figure 23). this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. figure 22. forward bias safe operating area 100 0.01 1000 1 v ce , collector-emitter voltage (volts) figure 23. reverse bias safe operating area 16 6 0 800 300 v ce , collector-emitter voltage (volts) 100 1 0.1 i c , collector current (amps) i c , collector current (amps) dc 5 ms 1 ms 10 m s 1 m s 8 2 gain 5 0 v -1.5 v -5 v t c 125 c l c = 4 mh 10 400 500 700 600 12 4 14 10 10 extended soa
buh150 http://onsemi.com 10 typical thermal response figure 24. typical thermal response (z q jc (t)) for buh150 1 0.01 10 0.1 0.01 t, time (ms) 0.1 1 100 1000 r(t), transient thermal resistance (normalized) r q jc (t) = r(t) r q jc r q jc = 0.83 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.05 single pulse 0.5 0.2 0.1 0.02
buh150 http://onsemi.com 11 package dimensions case 221a09 issue aa to220ab notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension z defines a zone where all body and lead irregularities are allowed. dim min max min max millimeters inches a 0.570 0.620 14.48 15.75 b 0.380 0.405 9.66 10.28 c 0.160 0.190 4.07 4.82 d 0.025 0.035 0.64 0.88 f 0.142 0.147 3.61 3.73 g 0.095 0.105 2.42 2.66 h 0.110 0.155 2.80 3.93 j 0.018 0.025 0.46 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.15 1.52 n 0.190 0.210 4.83 5.33 q 0.100 0.120 2.54 3.04 r 0.080 0.110 2.04 2.79 s 0.045 0.055 1.15 1.39 t 0.235 0.255 5.97 6.47 u 0.000 0.050 0.00 1.27 v 0.045 --- 1.15 --- z --- 0.080 --- 2.04 b q h z l v g n a k f 123 4 d seating plane t c s t u r j style 1: pin 1. base 2. collector 3. emitter 4. collector
buh150 http://onsemi.com 12 on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and s pecifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scillc data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indem nify and hold scillc and its of ficers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and re asonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized u se, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employ er. publication ordering information japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. buh150/d literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com n. american technical support : 8002829855 toll free usa/canada


▲Up To Search▲   

 
Price & Availability of BUH150-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X